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Received 17 September 1990, in h a l  form 19 August 1991 

Abstract. We show that below the lambda point a microscopic (pseudospin) model 
of liquid ‘He, that incorporates hard-core repulsion and nearest-neighbour attraction 
between atoms, is equivalent to a Gross-Pitsevskii (GP) model of weakly interacting 
(soft-core) bosons in the presence of IL self-generated gauge field. by specializing to 
cylindrically symmetric vortex solutions. Requiring consistency in the behaviour of 
the condenrate density in the two models, we are able to identify the gauge field in 
the GP model as that part of the total velocity that has a non-vanishing curl in the 
pseudospin model. It becomes evident that the gauge field is the depletion velocity. 

1. Introduction 

In order to provide a realistic description of the hydrodynamic properties of liquid 
4He below the lambda temperature TA, there have been several attempts to develop a 
gaugetheoretic formulation of superfluidity. Superfluid hydrodynamies has previously 
been studied by considering a model of weakly interacting bosons (Ginzburg and 
Pitaevskii 1958, Gross 1958, 1966), the interaction being a soft-core repulsion. This 
model (hereafter referred to as the GP model) leads to quantized vortices. However, 
there are two unphysical features associated with the model. First, the model predicts 
a continuity equation for the condensate density, totally ignoring the depletion effects 
due to  interactions. Experimental studies (Sears e l  d1982) indicate that the depletion 
effects are important even at very low temperatures (Olinto 1987). Second, the bulk 
velocity of the fluid is given in the GP model by vGp = (h/m)Vb (6 being the phase 
of the order parameter and m the mass of a 4He atom) leading to the vanishing of 
the vorticity, i.e. curl uGp = 0 almost everywhere. However, at the exact centre of 
the vortex it is singular. For a physically realistic vortex, one expects curl v to be 
non-vanishing in a finite region within the vortex core (Gross 1963). 

Work carried out by several authors (Sarfatt 1967, Thouless 1969, Cummings 
el al 1970, Chela-Flora 1977, Kawasaki and Brand 1985) shows that some aspects 
of the depletion can be incorporated by requiring the local gauge invariance of the 
Lagrangian in the GP theory. As may be expected, this requirement leads to coupled 
equations for the gauge and matter fields. It turns out that the gauge field appears as 
a depletion term in the continuity equation for the condensate density. However, in 
all these attempts, the gauge field has been treated like an externally imposed field, 
analogous to the discussion of the Meissner effect in superconductivity. But there is an 
important difference in the case of superfluidity, which must be stressed: any model 
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that takes a realistic interaction between the 4He atoms ints account should automatt- 
callg lead to such depletion effects. Therefore, the gauge field in the present context 
should be a self-generated one, rather than an externally imposed one. Furthermore, 
this makes it necessary to formulate the problem in such a way that the origin and 
physical significance of the gauge field become completely clear. This givea us ample 
motivation for comparing the results of a ‘gauged’ GP theory with those obtained 
in the framework of a model that incorporates the interaction more accurately than 
merely assuming a weak repulsion between atoms. In particular, we will show that 
the gauge field arises naturally within the framework of a realistic model. 

The microscopic pseudospin model of superfluid 4He (Matsubara and Matsuda 
1956, Whitlock and Zilsel 1963) is well suited for our purposes. In this model, the 
presence of the hard-core interaction between 4He atoms is taken into account by 
postulating fermion-like behaviour for the matter field operators at the same site, 
and boson-like behaviour for those at different sites. In addition, there is a nearest- 
neighbour (NN) attraction between atoms in this lattice model. Passing to the con- 
tinuum limit of the model we find that the condensate density p* is equal to the fluid 
density p minus the depletion term, We have recently derived a non-linear evolution 
equation for the order parameter and discussed various aspects of the model including 
the study of cylindrically symmetric vortex solutions (Balakrishnan et a i  1989). The 
continuity equation for the total density in this theory leads to a vorticity that is non- 
vanishing within a vortex core of finite range. This feature essentially arises because 
of the appropriate inclusion of the repulsive interaction between the atoms. Finally, 
in this model a depletion term is obtained naturally in the evolution equation of the 
condensate density, making it possible to understand the physical origin of the gauge 
field. 

The layout of this paper is as follows. In section 2, the ‘gauged’ GP model and 
the associated continuity equation for the condensate density p ,  are presented. In 
section 3, the pseudospin model is briefly described and the corresponding continuity 
equation for the total density pis  derived. In section 4, the equation of motion for ps 
in the pseudospin model is derived, and the gauge field A (sometimes referred to as 
the ‘depletion velocity field’ in the literature) is identified by comparing the equation 
with the continuity equation for ps obtained in section 2. Using this expression for 
A, the solution for the condensate density p,(r)  near the core centre and far away 
from it are determined for appropriate boundary conditions. The behaviour of this 
solution is shown to agree with the solution for p,(r) obtained by us from the equation 
of motion (Balakrishnan et ai 1989) in an earlier paper. Our conclusions are discussed 
in section 5. 

2. The gauged Gross-Pitaevskii model 

As stated in the introduction, the hydrodynamics of superfluid 4Fe has been studied 
using the theory of a weakly interacting bose system (Ginzburg and Pitaevskii 1958, 
Gross 1958, 1963). This GP model yields the following non-linear evolution equation 
for the complex order parameter or the condensate wavefunction $, defined as the 
expectation value of the annihilation operator for the bose field: 

iha$/at + (ti2/2+7a$ + vl$lz$ - p$ = o (2.1) 
on using the Hartree approximation. Here m is the mass of a 4He atom, and p is the 
chemical potential. The soft-core interaction energy V(r) between two 4He atoms is 
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written in terms of the interaction strength V by defining V ( r )  = VR6(r), R being 
the volume of the system. Setting $ = p."'exp(i$) leads to the continuity equation 

ap,/at + (fi/m)V. (p,v$) = 0. (2.2) 

It is to be noted that p. = I$[' is a dimensionless quantity and represents the proba- 
bility density of the condensate fraction. 

Now, 

curlmGp = (h//m)curl V$ 0 

in this model, and there is no depletion (i.e. p = ps).  However, it is well known 
that depletion effects due to interactions exist even at T = 0. Therefore it becomes 
necessary to improve this model. Among the various atlempts in this direction, we 
shall briefly outline the approach of Cummings el SI (1970), which is based on a 
suggestion of Sarfatt (1967). These authors assumed a Hamiltonian density which 
includes two types of 'probes'-a scalar field coupled to the mass density and a vector 
field coupled to the current density. Going beyond the Hartree-Fock model and using 
the concept of off-diagonal long-range order (Yang 1962), they obtained an equation 
for the order parameter. This equation contains a 'depletion velocity field' (with a 
non-vanishing curl) and a 'depletion chemical potential'. These fields are analogous to 
the vector and scalar potentials of conventional electrodynamics. Following these ideas 
Chela-Flores (1977) studied the effects introduced by imposing local gauge invariance 
on the GP Lagrangian: 

L = -(' 1fi/2)($at$* - v a t $ )  - (fi2/2m)v$* . v$ + vl$14 - PM'.  (2.3) 

The modified gauge-invariant Lagrangian is found by postulating that the gauge field 
A is a local function, independent of time. In this case V is replaced by the covariant 
derivative (V - i(m/fi)A) in equation (2.3) and, in addition, a pure gauge field term 
-imL2(V x A)' appears in the Lagrangian. A is taken to have the dimensions of 
velocity. Consequently, dimensional requirements necessitate the introduction of a 
length scale L in this term. The coupled equations of motion for the matter and 
gauge fields are then given by 

itd$/at = (-h2/2m)(V - i(m/h)A)'+ - V1$1'$ + p$ (2.4) 

and 

L'V x (V x A) = (h/2im)($V$* - $*V$) - \$\'A = p,[(R/m)Vq4 - A]. 

Equation (2.4) leads to the following equation of continuity for p, = I$llz: 
(2.5) 

apJat + v . [p,((ti/m)V$ - A)] = 0. 

Rewriting equation (2.6) as 

we see that the introduction of the gauge field has provided the (physically required) 
depletion term in the continuity equation for the condensate density. 
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To proceed, one must solve the coupled set of equations (2.4) and (2.5). As is clear 
from the manner in which the gauge field A hss been introduced in the foregoing, the 
earlier works have considered the gauge field to be purely external. However, in the 
present case, A is introduced in order to describe intrinsic 'frictional' effects in the 
system, arising ultimately from the interaction between atoms. Thus A musf depend 
implicitly on the interatomic interaction. But this same interaction determines the 
matter field + as well. Hence, in a consistent theory, A must be determined as a 
selfgeneraled gauge field which depends on the matter field. It is evident that for this 
purpose we need a model that incorporates the interactions in a reasonably realistic 
manner. The GP model is inadequate in this regard. In the next section we turn to 
an improved (pseudospin) model, with the ultimate aim of identifying the appropriate 
gauge field A from the formalism itself, instead of introducing it as an external field. 

3. The pseudospin model 

The pseudospin model (Matsubara and Matsuda 1956) is deduced by starting with a 
system of hard-core bosons with a (NN) attractive interaction. The hard core is incor- 
porated by demanding fermion-like anticommutation relations for the field operators 
at the same site, while boson-like commutation relations hold for operators belonging 
to different sites. The field operators behave like S = i spin-flip operators, and the 
system is represented by an anisotropic Heisenberg pseudospin Hamiltonian: 

H = - ( b  - p)S: + c ( h 2 / 4 m a 2 )  [ SPSP,, + uoSfS&,]} (3.1) 
I I 6 *=r,y 

where b = 3[(h2/ma2) - uo] and -uD(uo > 0) is the NN attractive interaction between 
two helium atoms separated by the lattice spacing a. In (3.1), I refers to the site index 
and the summation over 6 indicates a summation over NN pairs. Using this pseudospin 
model, Whitlock and Zilsel(l963) have studied the thermodynamic properties and the 
nature of the elementary excitations in the superfluid. 

In an earlier paper (Balakrishnan et ai 1989, hereafter referred to as I) we have 
analysed this model using spin coherent states to understand the non-linear hydrc- 
dynamics of superfluid *He. In this formalism the superfluid order parameter is spec- 
ified by qf = (Sf), the spin coherent state average. This quantity may be represented 
as 

ql E (Sf) = sin8( exp(i4,) (3.2) 

where 8, and 
at site 1. Also, 

stand for the polar and azimuthal angles of the classical spin vector 

(3.3) ( S ~ ) = ~ c o ~ 8 ~ = ~ ( 1 - 4 ~ q ~ ~ )  2 112 

( p r )  = - (Sf) = sin2(8,/2). (3.4) 

and 

I t  is evident that qr and p, are related by 

h l2  = P f ( 1  - P I )  (3.5) 
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and that Iqr12 6 a .  
Using the equation of motion 

and passing to the continuum version, we find (see I for details) the followingevolution 
equation for q: 

(3.7) 2 112 - ~oa2'l{v21d2 + - 41d2)l/(l - 4 l ~ l  1 . 
We note that the continuum version of equation (3.5) is 

lrl12 = P. = P(1 - d .  (3.8) 

In other words the condensate density p, is equal to the fluid density p minus the 
'depletion' p2 resulting essentially from the hard-core repulsion between atoms. It is 
easily seen that the GP equation (2.1) is obtained from equation (3.7) in the leading 
small amplitude approximation (lqI2 a i ) ,  on identifying 2b with U,,. Similarly, by 
retaining non-linear terms in a suitable manner one can recover the phenomenological 
equation of Rutledge el al (1978) for 4He films. Full linearization of equation (3.7) 
yields the Bogoliubov spectrum for the elementary excitations of the superfluid (w I). 

By setting q = [p(l- p)]'/'exp(i$) = $/'exp(i$) in equation (3.7) we obtain the 
following continuity equation: 

aplat + (h /m)v .  ( p )  = 0. (3.9) 

Thus we see that the total velocity v of the liquid may be identified as 

w = (h/n)(l - p)V4. (3.10) 

It is clear that, because of the presence of the depletion term, curl v is not identically 
equal to zero. 

We now derive an evolution equation for a complex function x defined by x = 
p'12 exp(iq5) where p is the total density, just as p s  is the condensate density. The new 
set of variables xI and x; is obtained from the spin coherent state averaged variables 
as 

X I  = p:'2exp(i41) = sin(0,/2) exp(i4f). (3.11) 

The expectation values of the spin operators are given in terms of xl and x; by 

and 
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where we have made use of equations (3.2) to (3.5). The amplitudes are related as 
follows: 

1t]fI2 = IX,l2(1 - IXfIZ). (3.13) 

The expectation value of the Hamiltonian density H can be written as 

(Hi) = - (b  - PI($ - P I )  + (h2/8maZ)I(1 - Pi)'"(Xt + xX(1- Piti )l'z(X~ti + X&.i) 

+ (1 - P,-1)1/2(XI-l + X:-J + (1 - Pf)"2(x: - Xl)Kl - Pft1)1/2 

x (x:tl - X f + d  + (1 - P,-1)1/2(x:-1 - xr-1)Il 

+.,U? - P d l  - h t 1  +Pt-l)Il. (3.14) 

For a classical spin system, the canonically conjugate variables are S; and $, with the 
Poisson bracket relation [$,,Sf] = 6 f , f , .  Using the relationship in equation (3.4), 4, 
and -pi may be treated as the conjugate variables, leading to the following Lagrangian 
density in the continuum limit (with 7i denoting (H) in this limit) 

= - -dr ,  t)d(r, t )  - 31 = Ilu'(ax/at) - x(ax*/at)I/2} 

- 71(X,X*,VX,VX*,V~X,V~X*).  (3.15) 

The second-order derivatives in this equation for 13 may be eliminated by using inte- 
gration by parts, and hence 

t = (i/2)(x'(ax/at) - x ( d x ' / W  + ( b  - P)($ - 1x1') + (h2/ma2)IxI2(1 - 1x1') 
+ f"o(1 - 21Xl2) - (h2/2"1 - IX12)(VX* . VX) 

+ ((h2/4m) - uoa2)(x'Vx - XVX*)'. 

The Euler-Lagrange equation corresponding to equation (3.16) is 

(3.16) 

(3.17) 

It is interesting to note that the structure of this evolution equation for x (which 
determines the total density p) is quite different from that of equation (3.7) for t] 
(which determines pa = 1t]I2, the density of the condensate). As a check on this 
Lagrangian approach, we mention that equation (3.9) can be recovered by an explicit 
evaluation of 8p/at = x'(ax/at) + x(ax'/at) from equation (3.17). 
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4. The gauge field A 

We begin by summarizing certain relevant aspects of the microscopic pseudospin model 
discussed in I. These will subsequently be used in establishing the connection between 
the rotational part of the total velocity in this model and the gauge field A. It has 
been shown in I that zquation (3.7) for the complex order parameter 9 in this model 
supports vortex solutions. In particular for a vortex with winding number n = 1 the 
condensate density p,(r) has the following behaviour (see equation (5.14) of I): 

7-0 lim p h )  (r/t)’ ,-CO lim pa(.) z eonstant. (4.1) 

The core size E has been estimated as 

2 112 € = h/(4mbfo) 

where b = 3[(R2/ma2) - uo] and ft denotes the equilibrium condensate density. 

equation for p. = lq1’: 
We proceed by first observing that equation (3.7) leads to the following ezact 

- SP, + -(1 h - 4p,)’h7. I..V+] = 0. 
at m 

For vortex solutions we have (by definition) 

Vp, . vt$ = 0. (4.3) 

Therefore equation (4.2) can be written as 

(4.4) 
aPs h h - + K V .  (p,V4) = ;v. ([I - (1 - 4P,)”~]P,V+). at 

Now let us consider the gauged GP model where the superfluid is described by the two 
coupled equations (2.4) and (2.5). In section 2 it was shown that the equation for the 
matter field, (2.4), leads to equation (2.7) for (ap,/at) .  Comparing this equation with 
(4.4) we obtain 

R 
m V+} = V . (Ap,). -v. - (1 - 4PA IPS (4.5) 

This identifies A as 

A = (h/m)[l - (1 - 4p,)’/’]V$+ (l/p,)curlX = (2h/m)pVt$+ (l/p,)curIX 

where we have used the relationship (see equation (3.8)) 

(4.6) 

p = 4 [I - (1 - 4 p p 1  (4.7) 

and X is an arbitrary vector. However, the choice of X should be such that when this 
expression for A is substituted into the equation for the gunge field, i.e. equation (2.5), 
one must obtain a solution for p,(r) whose behaviour is consistent with the behaviour 
(equation (4.1)) displayed by the microscopic model. 
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We are guided by the following physicd considerations: A should be a 'self- 
generated' gauge field as discussed in the introduction. Therefore curl X must be 
a function of ps and 4 which describe the condensate. Now, in the microscopic model, 
we have shown that v = (fr/m)(l -p)V& Thissuggests that we write the expression 
for v as 

v = (h/m)V4 - A. 

A = (h/m)pVd = (h/2m)[1- (1 - 4 p , ) ' / 7 ~ 4  

(4.8) 

It then becomes evident that the second term 

(4.9) 

is indeed responsible for making curlv # 0, i.e. it causes depletion effects. Equa- 
tions (4.9) and (4.6) together yield 

cur lX = (-h/m)p,pV+. 

At this point it is appropriate to mention the work of Kawasaki and Brand (1985). 
They have 'defined' a certain expression for v (different from ours) which has a non- 
zero curl by construction, to take depletion into account. The advantage of our ap- 
proach is that an expression for with this required property has been derived starting 
from first principles. 

It remains to substitute the expression for A given in equation (4.9) into equa- 
tion (2.5) and show that the resulting differential equation displays the required be- 
haviour (4.1) for p,(r). To do this, it is convenient to work in terms of a variable y: 

y = (1 - 4 p p .  (4.10) 

Thus equation (4.9) becomes 

A = (h/2m)(l- y)Vd. 

Specializing to the case of a single vortex solution with cylindrical symmetry we obtain 

Also, 

Hence using equations (4.11) and (4.12) in equation (2.5) we obtain 

(4.11) 

(4.12) 

(4.13) 
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Replacing (1 - Y) by R 

dZR 1 d R  1 
dr2 r dr 4Lz + -- = -R(2 - R)'. -- (4.14) 

We will solve this non-linear equation in an iterative fashion as follows: making the 
substitution R = Qr  in the linearized version of this equation we obtain the following 
(Bessel) equation (Abramowitz and Stegun 1986) 

(4.15) 

with the solution 

Q = CJ1(r/L) + DYl(r /L) .  (4.16) 

Physical considerations demand that ps should vanish at the centre of the core. Hence 
R should approach zero as r + 0. However, Y, y_ L/r as r -+ 0. Hence D is chosen 
to be zero. Since Jl(r) Y r as r -+ 0, 

Q = (4). (4.17) 

Consequently we may write (on using equation (4.10)) 

R Y (1 - (1 - 4pS)19 Y Crz/L (4.18) 

where C should be proportional to (L) - ' ,  L being the length scale in the problem. 
Comparison with equation (4.1) points out that L should represent the core radius 
{, which in turn depends on the microscopic parameters as discussed earlier in this 
section. It may be noted that the next iteration gives a higher order term in R, which 
can once again be neglected as r + 0. Hence the behaviour for small r remains the 
same as in equation (4.18). 

We now discuss the behaviour at the other limit, i.e. r -+ M. In this limit y = (1 - 
4pJ'f should approach zero at low temperatures in the pseudospin model. Putting 
y = Qr  and linearizing equation (4.13) we obtain 

d2Q dQ - Z 
2'- + I- - Q(1+ zz) = - 

dz2 dz 2L (4.19) 

where z = r/2L. The homogeneous equation corresponding to equation (4.19) has 
solutions I,(z) and K1(z). To obtain the solutions for the inhomogeneous equation 
we have to construct the Green function g(z,E) where the range of the variables is 
given by 0 Q ( z , { )  Q bo (bo being large). Thus for equation (4.19) we have 

S( .>O = -vl(z)u,z(~)/Po(E)w(~l,, uz;o 0 < E  e z 

= U,(+)U,(~)/PO(E)W(Ul I 4; E )  z < ( < b ,  (4.20) 

with Po([) = 5'. Ul and U, stand for the modified Bessel functions Il and K,. W is 
the Wronskian 

W(I,,K1;[) = - { - I .  (4.21) 
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Thus the total solution is 

with f(€) = € / 2 L .  

is 
When z assumes the value bo which eventually tends to large values, the solution 

(4.23) 

It is to be pointed out that 

If(~)/Po(~)w(u,,uz;S)l = -(w-l. (4.24) 

If C, is chosen such that the curly bracket in equation (4.23) is zero for bo + 00 we 
obtain 

0 = U(I) + C z ( ~ / 2 ~ ) ’ / 2 e x p ( - ~ )  I = r / 2 ~ .  

Thus 

Hence ps tends to its maximum value at large distances from the centre of the vortex, 
in agreement with equation (4.1). 

Thus using the self-generated gauge field A, the behaviour for p ,  for both r + 0 
and r -.+ 00 (for a single vortex solution) is seen to be consistent with the corresponding 
behaviour in the microscopic model. 

5. Concluding remarks 

We have shown that the pseudospin model of superfluid ‘He is equivalent to a gauged 
GP model with the gauge field A identified as the non-zero curl part of the total 
velocity, given by 

A = (h/m)pV$ = (h/2m)[l- (1 - 4p,)’/’]V$ ( 5 4  

provided Vp, . ‘74 = 0. This is definitely satisfied for the cylindrically symmetric 
vortex solutions considered by us, for which Vzq4 = 0. Also, the relationship curl X = 
(--h/m)pp,Vq4 (see below equation (4.9)) is automatically satisfied. Thus V . A = 0 
and equation (2.5) reduces to 

A - (LZ/ps)VZA = (h/m)V$. (5.2) 
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By using a phenomenological theory, Thouless (1969) has analysed the hydrodynamics 
of a dense superfluid and derived the following equation for U, the total velocity below 
T,: 

U - X ~ V ~ U  = (h/m)Vb (5.3) 

where 6 is the phase of the condensate wavefunction and A$ is proportional to (pS)-l. 
In spite of the similarity between equations (5.2) and (5.3), we assert that A # U. In 
fact U is given by 

U = (h/m)Vd - A (5.4) 

which, as we have shown, is consistent with the vortex solution of p,(r). Equa- 
tions (2.5) and (2.6) together imply that (ap,/&) = 0 for all time. The natural 
interpretation of the length scale L as characteristic of the variation in A emerges by 
comparison with the length scale of the vortex solutions given in I. Time-dependent 
solutions will be studied using time-dependent gauge fields in a future contribution. 

If one computes the line integral of the gauge field in equation (5.1) over a circuit 
with a radius which is very large when compared with the vortex core radius we obtain 

L A  dl = (nh/m)k. (5.5) 

where 

k = i [ 1 - ( 1 - 4  P s )  1/2 I .  (5.6) 

In this equation n denotes the winding number, and the temperature-dependent 
quantity pt denotes the constant value of p, obtained at a large distance from the 
vortex core. Using Gauss's theorem, the strength of the monopole corresponding to 
equation (5.1) is (Dirac 1978) 

p = (hk/2m)n. (5.7) 

In conclusion, we have been able to identify the pseudospin model of superfluid 
4He with a gauged GP model by specializing to cylindrically symmetric vortex solu- 
tions of the condensate order parameter. Since our model incorporates the hard-core 
interaction between the bosons in an effective manner, it has the advantage of explic- 
itly displaying the depletion characteristics present in a realistic system. This leads 
to the result that the gauge field is self-generated by the internal interactions in the 
system. 
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